3 research outputs found

    Hartree-Fock-Bogolyubov calculations for nuclei with tetrahedral deformation

    Full text link
    Hartree-Fock-Bogolyubov solutions corresponding to the tetrahedral deformation are found in six tetrahedrally doubly-magic nuclei. Values of the beta32 deformation, depths of the tetrahedral minima, and their energies relative to the co-existing quadrupole minima are determined for several versions of the Skyrme force. Reduction of the tetrahedral deformation energies by pairing correlations is quantitatively analysed. In light nuclei, shallow tetrahedral minima are found to be the lowest in energy, while in heavy nuclei, the minima are deeper but appear at a few MeV of excitation.Comment: 6 LaTeX pages, 2 PostScript figures, presented at the XII Nuclear Physics Workshop, 21-25 September, Kazimierz Dolny, Polan

    Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VI) HFODD (v2.38j): a new version of the program

    Full text link
    We describe the new version (v2.38j) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the D2h transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected two insignificant errors.Comment: 45 LaTeX pages, 4 figures, submitted to Computer Physics Communication
    corecore